The spt-function of Andrews.
نویسندگان
چکیده
Recently, Andrews introduced the function s(n) = spt(n) which counts the number of smallest parts among the integer partitions of n. We show that its generating function satisfies an identity analogous to Ramanujan's mock theta identities. As a consequence, we are able to completely determine the parity of s(n). Using another type of identity, one based on Hecke operators, we obtain a complete multiplicative theory for s(n) modulo 3. These congruences confirm unpublished conjectures of Garvan and Sellers. Our methods generalize to all integral moduli.
منابع مشابه
Notes on the spt function of George E . Andrews
Andrews defined spt(n) to be the total number of appearances of the smallest parts in all of the partitions of n. In this paper, we study the statistical distribution of spt(π), the number of smallest parts in the partition π as π ranges over all partitions of n. We also give a combinatorial proof of a conjecture of Hirschhorn, namely that p(0) + · · · + p(n− 1) < spt(n) < p(0) + · · · + p(n) f...
متن کاملGeneralized Higher Order Spt-functions
We give a new generalization of the spt-function of G.E. Andrews, namely Sptj(n), and give its combinatorial interpretation in terms of successive lower-Durfee squares. We then generalize the higher order spt-function sptk(n), due to F.G. Garvan, to jsptk(n), thus providing a two-fold generalization of spt(n), and give its combinatorial interpretation.
متن کاملOn Spt-crank Type Functions
In a recent paper, Andrews, Dixit, and Yee introduced a new spt-type function spt ω (n), which is closely related to Ramanujan’s third order mock theta function ω(q). Garvan and Jennings-Shaffer introduce a crank function which explains congruences for spt ω (n). In this note, we study asymptotic behavior of this crank function and confirm a positivity conjecture of the crank asymptotically. We...
متن کاملCongruences for Andrews’ Spt-function
Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo ` for all primes ` ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the powers of...
متن کاملCongruences for Andrews ’ Spt - Function modulo Powers of 5 , 7 and 13
Abstract. Congruences are found modulo powers of 5, 7 and 13 for Andrews’ smallest parts partition function spt(n). These congruences are reminiscent of Ramanujan’s partition congruences modulo powers of 5, 7 and 11. Recently, Ono proved explicit Ramanujan-type congruences for spt(n) modulo for all primes ≥ 5 which were conjectured earlier by the author. We extend Ono’s method to handle the pow...
متن کاملCongruences for the Andrews spt function.
Ramanujan-type congruences for the Andrews spt(n) partition function have been found for prime moduli 5 ≤ ℓ ≤ 37 in the work of Andrews [Andrews GE, (2008) J Reine Angew Math 624:133-142] and Garvan [Garvan F, (2010) Int J Number Theory 6:1-29]. We exhibit unexpectedly simple congruences for all ℓ≥5. Confirming a conjecture of Garvan, we show that if ℓ≥5 is prime and (-δ/ℓ) = 1, then spt[(ℓ2(ℓn...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 105 51 شماره
صفحات -
تاریخ انتشار 2008